Thursday, November 30, 2023

Amazon SageMaker Studio adds web-based interface, Code Editor, flexible workspaces, and streamlines user onboarding

Today, we are announcing an improved Amazon SageMaker Studio experience! The new SageMaker Studio web-based interface loads faster and provides consistent access to your preferred integrated development environment (IDE) and SageMaker resources and tooling, irrespective of your IDE choice. In addition to JupyterLab and RStudio, SageMaker Studio now includes a fully managed Code Editor based on Code-OSS (Visual Studio Code Open Source).

Both Code Editor and JupyterLab can be launched using a flexible workspace. With spaces, you can scale the compute and storage for your IDE up and down as you go, customize runtime environments, and pause-and-resume coding anytime from anywhere. You can spin up multiple such spaces, each configured with a different combination of compute, storage, and runtimes.

SageMaker Studio now also comes with a streamlined onboarding and administration experience to help both individual users and enterprise administrators get started in minutes. Let me give you a quick tour of some of these highlights.

New SageMaker Studio web-based interface
The new SageMaker Studio web-based interface acts as a command center for launching your preferred IDE and accessing your SageMaker tools to build, train, tune, and deploy models. You can now view SageMaker training jobs and endpoints in SageMaker Studio and access foundation models (FMs) via SageMaker JumpStart. Also, you no longer need to manually upgrade SageMaker Studio.

Amazon SageMaker Studio

New Code Editor based on Code-OSS (Visual Studio Code Open Source)
As a data scientist or machine learning (ML) practitioner, you can now sign in to SageMaker Studio and launch Code Editor directly from your browser. With Code Editor, you have access to thousands of VS Code compatible extensions from Open VSX registry and the preconfigured AWS toolkit for Visual Studio Code for developing and deploying applications on AWS. You can also use the artificial intelligence (AI)-powered coding companion and security scanning tool powered by Amazon CodeWhisperer and Amazon CodeGuru.

Amazon SageMaker Studio

Launch Code Editor and JupyterLab in a flexible workspace
You can launch both Code Editor and JupyterLab using private spaces that only the user creating the space has access to. This flexible workspace is designed to provide a faster and more efficient coding environment.

The spaces come preconfigured with a SageMaker distribution that contains popular ML frameworks and Python packages. With the help of the AI-powered coding companions and security tools, you can quickly generate, debug, explain, and refactor your code.

In addition, SageMaker Studio comes with an improved collaboration experience. You can use the built-in Git integration to share and version code or bring your own shared file storage using Amazon EFS to access a collaborative filesystem across different users or teams.

Amazon SageMaker Studio

Amazon SageMaker Studio

Amazon SageMaker Studio

Streamlined user onboarding and administration
With redesigned setup and onboarding workflows, you can now set up SageMaker Studio domains within minutes. As an individual user, you can now use a one-click experience to launch SageMaker Studio using default presets and without the need to learn about domains or AWS IAM roles.

As an enterprise administrator, step-by-step instructions help you choose the right authentication method, connect to your third-party identity providers, integrate networking and security configurations, configure fine-grained access policies, and choose the right applications to enable in SageMaker Studio. You can also update settings at any time.

To get started, navigate to the SageMaker console and select either Set up for single user or Set up for organization.

Amazon SageMaker Studio

The single-user setup will start deploying a SageMaker Studio domain using default presets and will be ready within a few minutes. The setup for organizations will guide you through the configuration step-by-step. Note that you can choose to keep working with the classic SageMaker Studio experience or start exploring the new experience.

Amazon SageMaker Studio

Now available
The new Amazon SageMaker Studio experience is available today in all AWS Regions where SageMaker Studio is available. Starting today, new SageMaker Studio domains will default to the new web-based interface. If you have an existing setup and want to start using the new experience, check out the SageMaker Developer Guide for instructions on how to migrate your existing domains.

Give it a try, and let us know what you think. You can send feedback to AWS re:Post for Amazon SageMaker Studio or through your usual AWS contacts.

Start building your ML projects with Amazon SageMaker Studio today!

— Antje



from AWS News Blog https://ift.tt/9NXWkTr
via IFTTT

Three new capabilities for Amazon Inspector broaden the realm of vulnerability scanning for workloads

Today, Amazon Inspector adds three new capabilities to increase the realm of possibilities when scanning your workloads for software vulnerabilities:

  • Amazon Inspector introduces a new set of open source plugins and an API allowing you to assess your container images for software vulnerabilities at build time directly from your continuous integration and continuous delivery (CI/CD) pipelines wherever they are running.
  • Amazon Inspector can now continuously monitor your Amazon Elastic Compute Cloud (Amazon EC2) instances without installing an agent or additional software (in preview).
  • Amazon Inspector uses generative artificial intelligence (AI) and automated reasoning to provide assisted code remediation for your AWS Lambda functions.

Amazon Inspector is a vulnerability management service that continually scans your AWS workloads for known software vulnerabilities and unintended network exposure. Amazon Inspector automatically discovers and scans running EC2 instances, container images in Amazon Elastic Container Registry (Amazon ECR) and within your CI/CD tools, and Lambda functions.

We all know engineering teams often face challenges when it comes to promptly addressing vulnerabilities. This is because of the tight release deadlines that force teams to prioritize development over tackling issues in their vulnerability backlog. But it’s also due to the complex and ever-evolving nature of the security landscape. As a result, a study showed that organizations take 250 days on average to resolve critical vulnerabilities. It is therefore crucial to identify potential security issues early in the development lifecycle to prevent their deployment into production.

Detecting vulnerabilities in your AWS Lambda functions code
Let’s start close to the developer with Lambda functions code.

In November 2022 and June 2023, Amazon Inspector added the capability to scan your function’s dependencies and code. Today, we’re adding generative AI and automated reasoning to analyze your code and automatically create remediation as code patches.

Amazon Inspector can now provide in-context code patches for multiple classes of vulnerabilities detected during security scans. Amazon Inspector extends the assessment of your code for security issues like injection flaws, data leaks, weak cryptography, or missing encryption. Thanks to generative AI, Amazon Inspector now provides suggestions how to fix it. It shows affected code snippets in context with suggested remediation.

Here is an example. I wrote a short snippet of Python code with a hardcoded AWS secret key. Never do that!

def create_session_noncompliant():
    import boto3
    # Noncompliant: uses hardcoded secret access key.
    sample_key = "AjWnyxxxxx45xxxxZxxxX7ZQxxxxYxxx1xYxxxxx"
    boto3.session.Session(aws_secret_access_key=sample_key)
    return response

I deploy the code. This triggers the assessment. I open the AWS Management Console and navigate to the Amazon Inspector page. In the Findings section, I find the vulnerability. It gives me the Vulnerability location and the Suggested remediation in a plain natural language explanation but also in diff text and graphical formats.

Inspector automated code remediation

Detecting vulnerabilities in your container CI/CD pipeline
Now, let’s move to your CI/CD pipelines when building containers.

Until today, Amazon Inspector was able to assess container images once they were built and stored in Amazon Elastic Container Registry (Amazon ECR). Starting today, Amazon Inspector can detect security issues much sooner in the development process by assessing container images during their build within CI/CD tools. Assessment results are returned in near real-time directly to the CI/CD tool’s dashboard. There is no need to enable Amazon Inspector to use this new capability.

We provide ready-to-use CI/CD plugins for Jenkins and JetBrain’s TeamCity, with more to come. There is also a new API (inspector-scan) and command (inspector-sbomgen) available from our AWS SDKs and AWS Command Line Interface (AWS CLI). This new API allows you to integrate Amazon Inspector in the CI/CD tool of your choice.

Upon execution, the plugin runs a container extraction engine on the configured resource and generates a CycloneDX-compatible software bill of materials (SBOM). Then, the plugin sends the SBOM to Amazon Inspector for analysis. The plugin receives the result of the scan in near real-time. It parses the response and generates outputs that Jenkins or TeamCity uses to pass or fail the execution of the pipeline.

To use the plugin with Jenkins, I first make sure there is a role attached to the EC2 instance where Jenkins is installed, or I have an AWS access key and secret access key with permissions to call the Amazon Inspector API.

I install the plugin directly from Jenkins (Jenkins Dashboard > Manage Jenkins > Plugins)

Inspect CICD Install Jenkins plugin

Then, I add an Amazon Inspector Scan step in my pipeline.

Inspector CICD - add Jenkins step

I configure the step with the IAM Role I created (or an AWS access key and secret access key when running on premises), my Docker Credentials, the AWS Region, and the Image Id.

Inspector CICD - configure jenkins plugins

When Amazon Inspector detects vulnerabilities, it reports them to the plugin. The build fails, and I can view the details directly in Jenkins.

Inspector CICD - findings in jenkins

The SBOM generation understands packages or applications for popular operating systems, such as Alpine, Amazon Linux, Debian, Ubuntu, and Red Hat packages. It also detects packages for Go, Java, NodeJS, C#, PHP, Python, Ruby, and Rust programming languages.

Detecting vulnerabilities on Amazon EC2 without installing agents (in preview)
Finally, let’s talk about agentless inspection of your EC2 instances.

Currently, Amazon Inspector uses AWS Systems Manager and the AWS Systems Manager Agent (SSM Agent) to collect information about the inventory of your EC2 instances. To ensure Amazon Inspector can communicate with your instances, you have to ensure three conditions. First, a recent version of the SSM Agent is installed on the instance. Second, the SSM Agent is started. And third, you attached an IAM role to the instance to allow the SSM Agent to communicate back to the SSM service. This seems fair and simple. But it is not when considering large deployments across multiple OS versions, AWS Regions, and accounts, or when you manage legacy applications. Each instance launched that doesn’t satisfy these three conditions is a potential security gap in your infrastructure.

With agentless scanning (in preview), Amazon Inspector doesn’t require the SSM Agent to scan your instances. It automatically discovers existing and new instances and schedules a vulnerability assessment for them. It does so by taking a snapshot of the instance’s EBS volumes and analyzing the snapshot. This technique has the extra advantage of not consuming any CPU cycle or memory on your instances, leaving 100 percent of the (virtual) hardware available for your workloads. After the analysis, Amazon Inspector deletes the snapshot.

To get started, enable hybrid scanning under EC2 scanning settings in the Amazon Inspector section of the AWS Management Console. Hybrid mode means Amazon Inspector continues to use the SSM Agent–based scanning for instances managed by SSM and automatically switches to agentless for instances that are not managed by SSM.

Inspector enable hybrid scanning

Under Account management, I can verify the list of scanned instances. I can see which instances are scanned with the SSM Agent and which are not.

Inspector list of instances monitored

Under Findings, I can filter by vulnerability, by account, by instance, and so on. I select by instance and select the agentless instance I want to review.

For that specific instance, Amazon Inspector lists more than 200 findings, sorted by severity.

Inspector list of findings

As usual, I can see the details of a finding to understand what the risk is and how to mitigate it.

Inspector details of a finding

Pricing and availability
Amazon Inspector code remediation for Lambda functions is available in ten Regions: US East (Ohio, N. Virginia), US West (Oregon), Asia Pacific (Singapore, Sydney, Tokyo), and Europe (Frankfurt, Ireland, London, Stockholm). It is available at no additional cost.

Amazon Inspector agentless vulnerability scanning for Amazon EC2 is available in preview in three AWS Regions: US East (N. Virginia), US West (Oregon), and Europe (Ireland).

The new API to scan containers at build time is available in the 21 AWS Regions where Amazon Inspector is available today.

There are no upfront or subscription costs. We charge on-demand based on the volume of activity. There is a price per EC2 instance or container image scan. As usual, the Amazon Inspector pricing page has the details.

Start today by adding the Jenkins or TeamCity agent to your containerized application CI/CD pipelines or activate the agentless Amazon EC2 inspection.

Now go build!

-- seb

from AWS News Blog https://ift.tt/Euj0Lar
via IFTTT

New myApplications in the AWS Management Console simplifies managing your application resources

Today, we are announcing the general availability of myApplications supporting application operations, a new set of capabilities that help you get started with your applications on AWS, operate them with less effort, and move faster at scale. With myApplication in the AWS Management Console, you can more easily manage and monitor the cost, health, security posture, and performance of your applications on AWS.

The myApplications experience is available in the Console Home, where you can access an Applications widget that lists the applications in an account. Now, you can create your applications more easily using the Create application wizard, connecting resources in your AWS account from one view in the console. The created application will automatically display in myApplications, and you can take action on your applications.

When you choose your application in the Applications widget in the console, you can see an at-a-glance view of key application metrics widgets in the applications dashboard. Here you can find, debug operational issues, and optimize your applications.

With a single action on the applications dashboard, you can dive deeper to act on specific resources in the relevant services, such as Amazon CloudWatch for application performance, AWS Cost Explorer for cost and usage, and AWS Security Hub for security findings.

Getting started with myApplications
To get started, on the AWS Management Console Home, choose Create application in the Applications widget. In the first step, input your application name and description.

In the next step, you can add your resources. Before you can search and add resources, you should turn on and set up AWS Resource Explorer, a managed capability that simplifies the search and discovery of your AWS resources across AWS Regions.

Choose Add resources and select the resources to add to your applications. You can also search by keyword, tag, or AWS CloudFormation stack to integrate groups of resources to manage the full lifecycle of your application.

After confirming, your resources are added, new awsApplication tags applied, and the myApplications dashboard will be automatically generated.

Now, let’s see which widgets can be useful.

The Application summary widget displays the name, description, and tag so you know which application you are working on. The Cost and usage widget visualizes your AWS resource costs and usage from AWS Cost Explorer, including the application’s current and forecasted month-end costs, top five billed services, and a monthly application resource cost trend chart. You can monitor spend, look for anomalies, and click to take action where needed.

The Compute widget summarizes of application compute resources, information about which are in alarm, and trend charts from CloudWatch showing basic metrics such as Amazon EC2 instance CPU utilization and AWS Lambda invocations. You also can assess application operations, look for anomalies, and take action.

The Monitoring and Operations widget displays alarms and alerts for resources associated with your application, service level objectives (SLOs), and standardized application performance metrics from CloudWatch Application Signals. You can monitor ongoing issues, assess trends, and quickly identify and drill down on any issues that might impact your application.

The Security widget shows the highest priority security findings identified by AWS Security Hub. Findings are listed by severity and service, so you can monitor their security posture and click to take action where needed.

The DevOps widget summarizes operational insights from AWS System Manager Application Manager, such as fleet management, state management, patch management, and configuration management status so you can assess compliance and take action.

You can also use the Tagging widget to assist you in reviewing and applying tags to your application.

Now available
You can enjoy this new myApplications capability, a new application-centric experience to easily manage and monitor applications on AWS. myApplications capability is available in the following AWS Regions: US East (Ohio, N. Virginia), US West (N. California, Oregon), South America (São Paulo), Asia Pacific (Hyderabad, Jakarta, Mumbai, Osaka, Seoul, Singapore, Sydney, Tokyo), Europe (Frankfurt, Ireland, London, Paris, Stockholm), Middle East (Bahrain) Regions.

AWS Premier Tier Services Partners— Escala24x7, IBM, Tech Mahindra, and Xebia will support application operations with complementary features and services.

Give it a try now in the AWS Management Console and send feedback to AWS re:Post for AWS Management Console, using the feedback link on the myApplications dashboard, or through your usual AWS Support contacts.

Channy



from AWS News Blog https://ift.tt/ui2QXwc
via IFTTT

Wednesday, November 29, 2023

Introducing Amazon SageMaker HyperPod, a purpose-built infrastructure for distributed training at scale

Today, we are introducing Amazon SageMaker HyperPod, which helps reducing time to train foundation models (FMs) by providing a purpose-built infrastructure for distributed training at scale. You can now use SageMaker HyperPod to train FMs for weeks or even months while SageMaker actively monitors the cluster health and provides automated node and job resiliency by replacing faulty nodes and resuming model training from a checkpoint.

The clusters come preconfigured with SageMaker’s distributed training libraries that help you split your training data and model across all the nodes to process them in parallel and fully utilize the cluster’s compute and network infrastructure. You can further customize your training environment by installing additional frameworks, debugging tools, and optimization libraries.

Let me show you how to get started with SageMaker HyperPod. In the following demo, I create a SageMaker HyperPod and show you how to train a Llama 2 7B model using the example shared in the AWS ML Training Reference Architectures GitHub repository.

Create and manage clusters
As the SageMaker HyperPod admin, you can create and manage clusters using the AWS Management Console or AWS Command Line Interface (AWS CLI). In the console, navigate to Amazon SageMaker, select Cluster management under HyperPod Clusters in the left menu, then choose Create a cluster.

Amazon SageMaker HyperPod Clusters

In the setup that follows, provide a cluster name and configure instance groups with your instance types of choice and the number of instances to allocate to each instance group.

Amazon SageMaker HyperPod

You also need to prepare and upload one or more lifecycle scripts to your Amazon Simple Storage Service (Amazon S3) bucket to run in each instance group during cluster creation. With lifecycle scripts, you can customize your cluster environment and install required libraries and packages. You can find example lifecycle scripts for SageMaker HyperPod in the GitHub repo.

Using the AWS CLI
You can also use the AWS CLI to create and manage clusters. For my demo, I specify my cluster configuration in a JSON file. I choose to create two instance groups, one for the cluster controller node(s) that I call “controller-group,” and one for the cluster worker nodes that I call “worker-group.” For the worker nodes that will perform model training, I specify Amazon EC2 Trn1 instances powered by AWS Trainium chips.

// demo-cluster.json
{
   "InstanceGroups": [
        {
            "InstanceGroupName": "controller-group",
            "InstanceType": "ml.m5.xlarge",
            "InstanceCount": 1,
            "lifecycleConfig": {
                "SourceS3Uri": "s3://<your-s3-bucket>/<lifecycle-script-directory>/",
                "OnCreate": "on_create.sh"
            },
            "ExecutionRole": "arn:aws:iam::111122223333:role/my-role-for-cluster",
            "ThreadsPerCore": 1
        },
        {
            "InstanceGroupName": "worker-group",
            "InstanceType": "trn1.32xlarge",
            "InstanceCount": 4,
            "lifecycleConfig": {
                "SourceS3Uri": "s3://<your-s3-bucket>/<lifecycle-script-directory>/",
                "OnCreate": "on_create.sh"
            },
            "ExecutionRole": "arn:aws:iam::111122223333:role/my-role-for-cluster",
            "ThreadsPerCore": 1
        }
    ]
}

To create the cluster, I run the following AWS CLI command:

aws sagemaker create-cluster \
--cluster-name antje-demo-cluster \
--instance-groups file://demo-cluster.json

Upon creation, you can use aws sagemaker describe-cluster and aws sagemaker list-cluster-nodes to view your cluster and node details. Note down the cluster ID and instance ID of your controller node. You need that information to connect to your cluster.

You also have the option to attach a shared file system, such as Amazon FSx for Lustre. To use FSx for Lustre, you need to set up your cluster with an Amazon Virtual Private Cloud (Amazon VPC) configuration. Here’s an AWS CloudFormation template that shows how to create a SageMaker VPC and how to deploy FSx for Lustre.

Connect to your cluster
As a cluster user, you need to have access to the cluster provisioned by your cluster admin. With access permissions in place, you can connect to the cluster using SSH to schedule and run jobs. You can use the preinstalled AWS CLI plugin for AWS Systems Manager to connect to the controller node of your cluster.

For my demo, I run the following command specifying my cluster ID and instance ID of the control node as the target.

aws ssm start-session \
--target sagemaker-cluster:ntg44z9os8pn_i-05a854e0d4358b59c \
--region us-west-2

Schedule and run jobs on the cluster using Slurm
At launch, SageMaker HyperPod supports Slurm for workload orchestration. Slurm is a popular an open source cluster management and job scheduling system. You can install and set up Slurm through lifecycle scripts as part of the cluster creation. The example lifecycle scripts show how. Then, you can use the standard Slurm commands to schedule and launch jobs. Check out the Slurm Quick Start User Guide for architecture details and helpful commands.

For this demo, I’m using this example from the AWS ML Training Reference Architectures GitHub repo that shows how to train Llama 2 7B on Slurm with Trn1 instances. My cluster is already setup with Slurm, and I have an FSx for Lustre filesystem mounted.

Note
The Llama 2 model is governed by Meta. You can request access through the Meta request access page.

Set up the cluster environment
SageMaker HyperPod supports training in a range of environments, including Conda, venv, Docker, and enroot. Following the instructions in the README, I build my virtual environment aws_neuron_venv_pytorch and set up the torch_neuronx and neuronx-nemo-megatron libraries for training models on Trn1 instances.

Prepare model, tokenizer, and dataset
I follow the instructions to download the Llama 2 model and tokenizer and convert the model into the Hugging Face format. Then, I download and tokenize the RedPajama dataset. As a final preparation step, I pre-compile the Llama 2 model using ahead-of-time (AOT) compilation to speed up model training.

Launch jobs on the cluster
Now, I’m ready to start my model training job using the sbatch command.

sbatch --nodes 4 --auto-resume=1 run.slurm ./llama_7b.sh

You can use the squeue command to view the job queue. Once the training job is running, the SageMaker HyperPod resiliency features are automatically enabled. SageMaker HyperPod will automatically detect hardware failures, replace nodes as needed, and resume training from checkpoints if the auto-resume parameter is set, as shown in the preceding command.

You can view the output of the model training job in the following file:

tail -f slurm-run.slurm-<JOB_ID>.out

A sample output indicating that model training has started will look like this:

Epoch 0:  22%|██▏       | 4499/20101 [22:26:14<77:48:37, 17.95s/it, loss=2.43, v_num=5563, reduced_train_loss=2.470, gradient_norm=0.121, parameter_norm=1864.0, global_step=4512.0, consumed_samples=1.16e+6, iteration_time=16.40]
Epoch 0:  22%|██▏       | 4500/20101 [22:26:32<77:48:18, 17.95s/it, loss=2.43, v_num=5563, reduced_train_loss=2.470, gradient_norm=0.121, parameter_norm=1864.0, global_step=4512.0, consumed_samples=1.16e+6, iteration_time=16.40]
Epoch 0:  22%|██▏       | 4500/20101 [22:26:32<77:48:18, 17.95s/it, loss=2.44, v_num=5563, reduced_train_loss=2.450, gradient_norm=0.120, parameter_norm=1864.0, global_step=4512.0, consumed_samples=1.16e+6, iteration_time=16.50]

To further monitor and profile your model training jobs, you can use SageMaker hosted TensorBoard or any other tool of your choice.

Now available
SageMaker HyperPod is available today in AWS Regions US East (Ohio), US East (N. Virginia), US West (Oregon), Asia Pacific (Singapore), Asia Pacific (Sydney), Asia Pacific (Tokyo), Europe (Frankfurt), Europe (Ireland), and Europe (Stockholm).

Learn more:

  • See Amazon SageMaker HyperPod for pricing information and a list of supported cluster instance types
  • Check out the Developer Guide
  • Visit the AWS Management Console to start training your FMs with SageMaker HyperPod

— Antje

PS: Writing a blog post at AWS is always a team effort, even when you see only one name under the post title. In this case, I want to thank Brad Doran, Justin Pirtle, Ben Snyder, Pierre-Yves Aquilanti, Keita Watanabe, and Verdi March for their generous help with example code and sharing their expertise in managing large-scale model training infrastructures, Slurm, and SageMaker HyperPod.



from AWS News Blog https://ift.tt/4aFbYg6
via IFTTT

Amazon Titan Image Generator, Multimodal Embeddings, and Text models are now available in Amazon Bedrock

Today, we’re introducing two new Amazon Titan multimodal foundation models (FMs): Amazon Titan Image Generator (preview) and Amazon Titan Multimodal Embeddings. I’m also happy to share that Amazon Titan Text Lite and Amazon Titan Text Express are now generally available in Amazon Bedrock. You can now choose from three available Amazon Titan Text FMs, including Amazon Titan Text Embeddings.

Amazon Titan models incorporate 25 years of artificial intelligence (AI) and machine learning (ML) innovation at Amazon and offer a range of high-performing image, multimodal, and text model options through a fully managed API. AWS pre-trained these models on large datasets, making them powerful, general-purpose models built to support a variety of use cases while also supporting the responsible use of AI.

You can use the base models as is, or you can privately customize them with your own data. To enable access to Amazon Titan FMs, navigate to the Amazon Bedrock console and select Model access on the bottom left menu. On the model access overview page, choose Manage model access and enable access to the Amazon Titan FMs.

Amazon Titan Models

Let me give you a quick tour of the new models.

Amazon Titan Image Generator (preview)
As a content creator, you can now use Amazon Titan Image Generator to quickly create and refine images using English natural language prompts. This helps companies in advertising, e-commerce, and media and entertainment to create studio-quality, realistic images in large volumes and at low cost. The model makes it easy to iterate on image concepts by generating multiple image options based on the text descriptions. The model can understand complex prompts with multiple objects and generates relevant images. It is trained on high-quality, diverse data to create more accurate outputs, such as realistic images with inclusive attributes and limited distortions.

Titan Image Generator’s image editing features include the ability to automatically edit an image with a text prompt using a built-in segmentation model. The model supports inpainting with an image mask and outpainting to extend or change the background of an image. You can also configure image dimensions and specify the number of image variations you want the model to generate.

In addition, you can customize the model with proprietary data to generate images consistent with your brand guidelines or to generate images in a specific style, for example, by fine-tuning the model with images from a previous marketing campaign. Titan Image Generator also mitigates harmful content generation to support the responsible use of AI. All images generated by Amazon Titan contain an invisible watermark, by default, designed to help reduce the spread of misinformation by providing a discreet mechanism to identify AI-generated images.

Amazon Titan Image Generator in action
You can start using the model in the Amazon Bedrock console by submitting either an English natural language prompt to generate images or by uploading an image for editing. In the following example, I show you how to generate an image with Amazon Titan Image Generator using the AWS SDK for Python (Boto3).

First, let’s have a look at the configuration options for image generation that you can specify in the body of the inference request. For task type, I choose TEXT_IMAGE to create an image from a natural language prompt.

import boto3
import json

bedrock = boto3.client(service_name="bedrock")
bedrock_runtime = boto3.client(service_name="bedrock-runtime")

# ImageGenerationConfig Options:
#   numberOfImages: Number of images to be generated
#   quality: Quality of generated images, can be standard or premium
#   height: Height of output image(s)
#   width: Width of output image(s)
#   cfgScale: Scale for classifier-free guidance
#   seed: The seed to use for reproducibility  

body = json.dumps(
    {
        "taskType": "TEXT_IMAGE",
        "textToImageParams": {
            "text": "green iguana",   # Required
#           "negativeText": "<text>"  # Optional
        },
        "imageGenerationConfig": {
            "numberOfImages": 1,   # Range: 1 to 5 
            "quality": "premium",  # Options: standard or premium
            "height": 768,         # Supported height list in the docs 
            "width": 1280,         # Supported width list in the docs
            "cfgScale": 7.5,       # Range: 1.0 (exclusive) to 10.0
            "seed": 42             # Range: 0 to 214783647
        }
    }
)

Next, specify the model ID for Amazon Titan Image Generator and use the InvokeModel API to send the inference request.

response = bedrock_runtime.invoke_model(
    body=body, 
    modelId="amazon.titan-image-generator-v1" 
    accept="application/json", 
    contentType="application/json"
)

Then, parse the response and decode the base64-encoded image.

import base64
from PIL import Image
from io import BytesIO

response_body = json.loads(response.get("body").read())
images = [Image.open(BytesIO(base64.b64decode(base64_image))) for base64_image in response_body.get("images")]

for img in images:
    display(img)

Et voilà, here’s the green iguana (one of my favorite animals, actually):

Green iguana generated by Amazon Titan Image Generator

To learn more about all the Amazon Titan Image Generator features, visit the Amazon Titan product page. (You’ll see more of the iguana over there.)

Next, let’s use this image with the new Amazon Titan Multimodal Embeddings model.

Amazon Titan Multimodal Embeddings
Amazon Titan Multimodal Embeddings helps you build more accurate and contextually relevant multimodal search and recommendation experiences for end users. Multimodal refers to a system’s ability to process and generate information using distinct types of data (modalities). With Titan Multimodal Embeddings, you can submit text, image, or a combination of the two as input.

The model converts images and short English text up to 128 tokens into embeddings, which capture semantic meaning and relationships between your data. You can also fine-tune the model on image-caption pairs. For example, you can combine text and images to describe company-specific manufacturing parts to understand and identify parts more effectively.

By default, Titan Multimodal Embeddings generates vectors of 1,024 dimensions, which you can use to build search experiences that offer a high degree of accuracy and speed. You can also configure smaller vector dimensions to optimize for speed and price performance. The model provides an asynchronous batch API, and the Amazon OpenSearch Service will soon offer a connector that adds Titan Multimodal Embeddings support for neural search.

Amazon Titan Multimodal Embeddings in action
For this demo, I create a combined image and text embedding. First, I base64-encode my image, and then I specify either inputText, inputImage, or both in the body of the inference request.

# Maximum image size supported is 2048 x 2048 pixels
with open("iguana.png", "rb") as image_file:
    input_image = base64.b64encode(image_file.read()).decode('utf8')

# You can specify either text or image or both
body = json.dumps(
    {
        "inputText": "Green iguana on tree branch",
        "inputImage": input_image
    }
)

Next, specify the model ID for Amazon Titan Multimodal Embeddings and use the InvokeModel API to send the inference request.

response = bedrock_runtime.invoke_model(
        body=body, 
        modelId="amazon.titan-embed-image-v1", 
        accept="application/json", 
        contentType="application/json"
)

Let’s see the response.

response_body = json.loads(response.get("body").read())
print(response_body.get("embedding"))
        
[-0.015633494, -0.011953583, -0.022617092, -0.012395329, 0.03954641, 0.010079376, 0.08505301, -0.022064181, -0.0037248489, ...]

I redacted the output for brevity. The distance between multimodal embedding vectors, measured with metrics like cosine similarity or euclidean distance, shows how similar or different the represented information is across modalities. Smaller distances mean more similarity, while larger distances mean more dissimilarity.

As a next step, you could build an image database by storing and indexing the multimodal embeddings in a vector store or vector database. To implement text-to-image search, query the database with inputText. For image-to-image search, query the database with inputImage. For image+text-to-image search, query the database with both inputImage and inputText.

Amazon Titan Text
Amazon Titan Text Lite and Amazon Titan Text Express are large language models (LLMs) that support a wide range of text-related tasks, including summarization, translation, and conversational chatbot systems. They can also generate code and are optimized to support popular programming languages and text formats like JSON and CSV.

Titan Text Express – Titan Text Express has a maximum context length of 8,192 tokens and is ideal for a wide range of tasks, such as open-ended text generation and conversational chat, and support within Retrieval Augmented Generation (RAG) workflows.

Titan Text Lite – Titan Text Lite has a maximum context length of 4,096 tokens and is a price-performant version that is ideal for English-language tasks. The model is highly customizable and can be fine-tuned for tasks such as article summarization and copywriting.

Amazon Titan Text in action
For this demo, I ask Titan Text to write an email to my team members suggesting they organize a live stream: “Compose a short email from Antje, Principal Developer Advocate, encouraging colleagues in the developer relations team to organize a live stream to demo our new Amazon Titan V1 models.”

body = json.dumps({
    "inputText": prompt, 
    "textGenerationConfig":{  
        "maxTokenCount":512,
        "stopSequences":[],
        "temperature":0,
        "topP":0.9
    }
})

Titan Text FMs support temperature and topP inference parameters to control the randomness and diversity of the response, as well as maxTokenCount and stopSequences to control the length of the response.

Next, choose the model ID for one of the Titan Text models and use the InvokeModel API to send the inference request.

response = bedrock_runtime.invoke_model(
    body=body,
        # Choose modelID
        # Titan Text Express: "amazon.titan-text-express-v1"
        # Titan Text Lite: "amazon.titan-text-lite-v1"
        modelID="amazon.titan-text-express-v1"
    accept="application/json", 
    contentType="application/json"
)

Let’s have a look at the response.

response_body = json.loads(response.get('body').read())
outputText = response_body.get('results')[0].get('outputText')

text = outputText[outputText.index('\n')+1:]
email = text.strip()
print(email)

Subject: Demo our new Amazon Titan V1 models live!

Dear colleagues,

I hope this email finds you well. I am excited to announce that we have recently launched our new Amazon Titan V1 models, and I believe it would be a great opportunity for us to showcase their capabilities to the wider developer community.

I suggest that we organize a live stream to demo these models and discuss their features, benefits, and how they can help developers build innovative applications. This live stream could be hosted on our YouTube channel, Twitch, or any other platform that is suitable for our audience.

I believe that showcasing our new models will not only increase our visibility but also help us build stronger relationships with developers. It will also provide an opportunity for us to receive feedback and improve our products based on the developer’s needs.

If you are interested in organizing this live stream, please let me know. I am happy to provide any support or guidance you may need. Together, let’s make this live stream a success and showcase the power of Amazon Titan V1 models to the world!

Best regards,
Antje
Principal Developer Advocate

Nice. I could send this email right away!

Availability and pricing
Amazon Titan Text FMs are available today in AWS Regions US East (N. Virginia), US West (Oregon), Asia Pacific (Singapore, Tokyo), and Europe (Frankfurt). Amazon Titan Multimodal Embeddings is available today in the AWS Regions US East (N. Virginia) and US West (Oregon). Amazon Titan Image Generator is available in public preview in the AWS Regions US East (N. Virginia) and US West (Oregon). For pricing details, see the Amazon Bedrock Pricing page.

Learn more

Go to the AWS Management Console to start building generative AI applications with Amazon Titan FMs on Amazon Bedrock today!

— Antje



from AWS News Blog https://ift.tt/FhJxQbd
via IFTTT

Amazon Bedrock now provides access to Anthropic’s latest model, Claude 2.1

Today, we’re announcing the availability of Anthropic’s Claude 2.1 foundation model (FM) in Amazon Bedrock. Last week, Anthropic introduced its latest model, Claude 2.1, delivering key capabilities for enterprises such as an industry-leading 200,000 token context window (2x the context of Claude 2.0), reduced rates of hallucination, improved accuracy over long documents, system prompts, and a beta tool use feature for function calling and workflow orchestration.

With Claude 2.1’s availability in Amazon Bedrock, you can build enterprise-ready generative artificial intelligence (AI) applications using more honest and reliable AI systems from Anthropic. You can now use the Claude 2.1 model provided by Anthropic in the Amazon Bedrock console.

Here are some key highlights about the new Claude 2.1 model in Amazon Bedrock:

200,000 token context window – Enterprise applications demand larger context windows and more accurate outputs when working with long documents such as product guides, technical documentation, or financial or legal statements. Claude 2.1 supports 200,000 tokens, the equivalent of roughly 150,000 words or over 500 pages of documents. When uploading extensive information to Claude, you can summarize, perform Q&A, forecast trends, and compare and contrast multiple documents for drafting business plans and analyzing complex contracts.

Strong accuracy upgrades – Claude 2.1 has also made significant gains in honesty, with a 2x decrease in hallucination rates, 50 percent fewer hallucinations in open-ended conversation and document Q&A, a 30 percent reduction in incorrect answers, and a 3–4 times lower rate of mistakenly concluding that a document supports a particular claim compared to Claude 2.0. Claude increasingly knows what it doesn’t know and will more likely demur rather than hallucinate. With this improved accuracy, you can build more reliable, mission-critical applications for your customers and employees.

System prompts – Claude 2.1 now supports system prompts, a new feature that can improve Claude’s performance in a variety of ways, including greater character depth and role adherence in role-playing scenarios, particularly over longer conversations, as well as stricter adherence to guidelines, rules, and instructions. This represents a structural change, but not a content change from former ways of prompting Claude.

Tool use for function calling and workflow orchestration – Available as a beta feature, Claude 2.1 can now integrate with your existing internal processes, products, and APIs to build generative AI applications. Claude 2.1 accurately retrieves and processes data from additional knowledge sources as well as invokes functions for a given task.  Claude 2.1 can answer questions by searching databases using private APIs and a web search API, translate natural language requests into structured API calls, or connect to product datasets to make recommendations and help customers complete purchases. Access to this feature is currently limited to select early access partners, with plans for open access in the near future. If you are interested in gaining early access, please contact your AWS account team.

To learn more about Claude 2.1’s features and capabilities, visit Anthropic Claude on Amazon Bedrock and the Amazon Bedrock documentation.

Claude 2.1 in action
To get started with Claude 2.1 in Amazon Bedrock, go to the Amazon Bedrock console. Choose Model access on the bottom left pane, then choose Manage model access on the top right side, submit your use case, and request model access to the Anthropic Claude model. It may take several minutes to get access to models. If you already have access to the Claude model, you don’t need to request access separately for Claude 2.1.

To test Claude 2.1 in chat mode, choose Text or Chat under Playgrounds in the left menu pane. Then select Anthropic and then Claude v2.1.

By choosing View API request, you can also access the model via code examples in the AWS Command Line Interface (AWS CLI) and AWS SDKs. Here is a sample of the AWS CLI command:

$ aws bedrock-runtime invoke-model \
      --model-id anthropic.claude-v2:1 \
      --body "{\"prompt\":\"Human: \\n\\nHuman: Tell me funny joke about outer space!\n\nAssistant:", "max_tokens_to_sample": 50}' \
      --cli-binary-format raw-in-base64-out \
      invoke-model-output.txt

You can use system prompt engineering techniques provided by the Claude 2.1 model, where you place your inputs and documents before any questions that reference or utilize that content. Inputs can be natural language text, structured documents, or code snippets using <document>, <papers>, <books>, or <code> tags, and so on. You can also use conversational text, such as chat history, and Retrieval Augmented Generation (RAG) results, such as chunked documents.

Here is a system prompt example for support agents to respond to customer questions based on corporate documents.

Here are some documents for you to reference for your task:
<documents>
 <document index="1">
  <document_content>
  (the text content of the document - could be a passage, web page, article, etc)
   </document_content>
<document index="2">
  <source>https://mycompany.repository/userguide/what-is-it.html</source>
</document>
<document index="3">
  <source>https://mycompany.repository/docs/techspec.pdf</source>
 </document>
...
</documents>

You are Larry, and you are a customer advisor with deep knowledge of your company's products. Larry has a great deal of patience with his customers, even when they say nonsense or are sarcastic. Larry's answers are polite but sometimes funny. However, he only answers questions about the company's products and doesn't know much about other questions. Use the provided documentation to answer user questions.

Human: Your product is making a weird stuttering sound when I operate. What might be the problem?

To learn more about prompt engineering on Amazon Bedrock, see the Prompt engineering guidelines included in the Amazon Bedrock documentation. You can learn general prompt techniques, templates, and examples for Amazon Bedrock text models, including Claude.

Now available
Claude 2.1 is available today in the US East (N. Virginia) and US West (Oregon) Regions.

You only pay for what you use, with no time-based term commitments for on-demand mode. For text generation models, you are charged for every input token processed and every output token generated. Or you can choose the provisioned throughput mode to meet your application’s performance requirements in exchange for a time-based term commitment. To learn more, see Amazon Bedrock Pricing.

Give Anthropic Claude 2.1 a try in Amazon Bedrock console today and send feedback to AWS re:Post for Amazon Bedrock or through your usual AWS Support contacts.

Channy



from AWS News Blog https://ift.tt/DSq0hXV
via IFTTT

Tuesday, November 28, 2023

Announcing the new Amazon S3 Express One Zone high performance storage class

The new Amazon S3 Express One Zone storage class is designed to deliver up to 10x better performance than the S3 Standard storage class while handling hundreds of thousands of requests per second with consistent single-digit millisecond latency, making it a great fit for your most frequently accessed data and your most demanding applications. Objects are stored and replicated on purpose built hardware within a single AWS Availability Zone, allowing you to co-locate storage and compute (Amazon EC2, Amazon ECS, and Amazon EKS) resources to further reduce latency.

Amazon S3 Express One Zone
With very low latency between compute and storage, the Amazon S3 Express One Zone storage class can help to deliver a significant reduction in runtime for data-intensive applications, especially those that use hundreds or thousands of parallel compute nodes to process large amounts of data for AI/ML training, financial modeling, media processing, real-time ad placement, high performance computing, and so forth. These applications typically keep the data around for a relatively short period of time, but access it very frequently during that time.

This new storage class can handle objects of any size, but is especially awesome for smaller objects. This is because for smaller objects the time to first byte is very close to the time for last byte. In all storage systems, larger objects take longer to stream because there is more data to download during the transfer, and therefore the storage latency has less impact on the total time to read the object. As a result, smaller objects receive an outsized benefit from lower storage latency compared to large objects. Because of S3 Express One Zone’s consistent very low latency, small objects can be read up to 10x faster compared to S3 Standard.

The extremely low latency provided by Amazon S3 Express One Zone, combined with request costs that are 50% lower than for the S3 Standard storage class, means that your Spot and On-Demand compute resources are used more efficiently and can be shut down earlier, leading to an overall reduction in processing costs.

Each Amazon S3 Express One Zone directory bucket exists in a single Availability Zone that you choose, and can be accessed using the usual set of S3 API functions: CreateBucket, PutObject, GetObject, ListObjectsV2, and so forth. The buckets also support a carefully chosen set of S3 features including byte-range fetches, multi-part upload, multi-part copy, presigned URLs, and Access Analyzer for S3. You can upload objects directly, write code that uses CopyObject, or use S3 Batch Operations,

In order to reduce latency and to make this storage class as efficient & scalable as possible, we are introducing a new bucket type, a new authentication model, and a bucket naming convention:

New bucket type – The new directory buckets are specific to this storage class, and support hundreds of thousands of requests per second. They have a hierarchical namespace and store object key names in a directory-like manner. The path delimiter must be “/“, and any prefixes that you supply to ListObjectsV2 must end with a delimiter. Also, list operations return results without first sorting them, so you cannot do a “start after” retrieval.

New authentication model – The new CreateSession function returns a session token that grants access to a specific bucket for five minutes. You must include this token in the requests that you make to other S3 API functions that operate on the bucket or the objects in it, with the exception of CopyObject, which requires IAM credentials. The newest versions of the AWS SDKs handle session creation automatically.

Bucket naming – Directory bucket names must be unique within their AWS Region, and must specify an Availability Zone ID in a specially formed suffix. If my base bucket name is jbarr and it exists in Availability Zone use1-az5 (Availability Zone 5 in the US East (N. Virginia) Region) the name that I supply to CreateBucket would be jbarr--use1-az5--x-s3. Although the bucket exists within a specific Availability Zone, it is accessible from the other zones in the region, and there are no data transfer charges for requests from compute resources in one Availability Zone to directory buckets in another one in the same region.

Amazon S3 Express One Zone in action
Let’s put this new storage class to use. I will focus on the command line, but AWS Management Console and API access are also available.

My EC2 instance is running in my us-east-1f Availability Zone. I use jq to map this value to an Availability Zone Id:

$ aws ec2 describe-availability-zones --output json | \
  jq -r  '.AvailabilityZones[] | select(.ZoneName == "us-east-1f") | .ZoneId'
use1-az5

I create a bucket configuration (s3express-bucket-config.json) and include the Id:

{
        "Location" :
        {
                "Type" : "AvailabilityZone",
                "Name" : "use1-az5"
        },
        "Bucket":
        {
                "DataRedundancy" : "SingleAvailabilityZone",
                "Type"           : "Directory"
        }
}

After installing the newest version of the AWS Command Line Interface (AWS CLI), I create my directory bucket:

$ aws s3api create-bucket --bucket jbarr--use1-az5--x-s3 \
  --create-bucket-configuration file://s3express-bucket-config.json \
  --region us-east-1
-------------------------------------------------------------------------------------------
|                                       CreateBucket                                      |
+----------+------------------------------------------------------------------------------+
|  Location|  https://jbarr--use1-az5--x-s3.s3express-use1-az5.us-east-1.amazonaws.com/   |
+----------+------------------------------------------------------------------------------+

Then I can use the directory bucket as the destination for other CLI commands as usual (the second aws is the directory where I unzipped the AWS CLI):

$ aws s3 sync aws s3://jbarr--use1-az5--x-s3

When I list the directory bucket’s contents, I see that the StorageClass is EXPRESS_ONEZONE:

$ aws s3api list-objects-v2 --bucket jbarr--use1-az5--x-s3 --output json | \
  jq -r '.Contents[] | {Key: .Key, StorageClass: .StorageClass}'
...
{
  "Key": "install",
  "StorageClass": "EXPRESS_ONEZONE"
}
...

The Management Console for S3 shows General purpose buckets and Directory buckets on separate tabs:

I can import the contents of an existing bucket (or a prefixed subset of the contents) into a directory bucket using the Import button, as seen above. I select a source bucket, click Import, and enter the parameters that will be used to generate an inventory of the source bucket and to create and an S3 Batch Operations job.

The job is created and begins to execute:

Things to know
Here are some important things to know about this new S3 storage class:

Regions – Amazon S3 Express One Zone is available in the US East (N. Virginia), US West (Oregon), Asia Pacific (Tokyo), and Europe (Stockholm) Regions, with plans to expand to others over time.

Other AWS Services – You can use Amazon S3 Express One Zone with other AWS services including Amazon SageMaker Model Training, Amazon Athena, Amazon EMR, and AWS Glue Data Catalog to accelerate your machine learning and analytics workloads. You can also use Mountpoint for Amazon S3 to process your S3 objects in file-oriented fashion.

Pricing – Pricing, like the other S3 storage classes, is on a pay-as-you-go basis. You pay $0.16/GB/month in the US East (N. Virginia) Region, with a one-hour minimum billing time for each object, and additional charges for certain request types. You pay an additional per-GB fee for the portion of any request that exceeds 512 KB. For more information, see the Amazon S3 Pricing page.

Durability – In the unlikely case of the loss or damage to all or part of an AWS Availability Zone, data in a One Zone storage class may be lost. For example, events like fire and water damage could result in data loss. Apart from these types of events, our One Zone storage classes use similar engineering designs as our Regional storage classes to protect objects from independent disk, host, and rack-level failures, and each are designed to deliver 99.999999999% data durability.

SLA – Amazon S3 Express One Zone is designed to deliver 99.95% availability with an availability SLA of 99.9%; for information see the Amazon S3 Service Level Agreement page.

This new storage class is available now and you can start using it today!

Learn more
Amazon S3 Express One Zone

Jeff;



from AWS News Blog https://ift.tt/Hbh56Uc
via IFTTT

The Ultimate Guide to Amazon Seller Central

 a computer screen displaying various analytical charts and graphs, with an Amazon box and a mouse beside it, all set against a backdrop of a bustling marketplace, hand-drawn abstract illustration for a company blog, in style of corporate memphis, faded colors, white background, professional, minimalist, clean lines

The Ultimate Guide to Amazon Seller Central

Amazon Seller Central is a powerful platform that offers immense opportunities for individuals and businesses to sell their products online. Whether you are an established seller or a newcomer to the e-commerce world, understanding how to navigate and utilize Amazon Seller Central is crucial for your success in the marketplace.

Understanding Amazon Seller Central

What is Amazon Seller Central, you may ask? It is a web-based platform provided by Amazon that allows sellers to manage their inventory, fulfill orders, handle customer service, and monitor their performance. In essence, it provides sellers with a centralized hub to sell and grow their business on the Amazon marketplace.

Amazon Seller Central is a comprehensive online platform that empowers sellers to take control of their e-commerce business. By providing a user-friendly interface and a range of powerful tools, it simplifies the selling process.

One of the main advantages of using Amazon Seller Central is the exposure to Amazon's vast customer base. With millions of shoppers visiting Amazon every day, sellers have the potential to reach a massive audience and increase their sales exponentially. Additionally, the platform offers robust tools for managing inventory, tracking sales performance, and optimizing product listings. These features enable sellers to monitor their business's health and make data-driven decisions.

Setting Up Your Amazon Seller Central Account

To get started on Amazon Seller Central, you need to create an account. The process is straightforward and involves providing basic information about your business, selecting a selling plan, and agreeing to the terms and conditions set by Amazon. Once your account is set up, you can begin listing products and selling on the platform.

But what else can you do with Amazon Seller Central? Let's dive deeper into the platform's features and explore how it can benefit your business.

Inventory Management

Amazon Seller Central offers a robust inventory management system that allows sellers to keep track of their products. You can easily add new products, update existing listings, and manage your inventory levels. The platform provides real-time data on stock availability, ensuring that you never run out of popular items. Additionally, you can set up automated replenishment alerts to ensure a seamless supply chain.

Fulfillment Options

When it comes to fulfilling orders, Amazon Seller Central offers multiple options. You can choose to fulfill orders yourself, known as merchant-fulfilled, or opt for Amazon's fulfillment service, known as FBA (Fulfillment by Amazon). With FBA, Amazon takes care of the storage, packaging, and shipping of your products, allowing you to focus on other aspects of your business. This service is especially beneficial for sellers who want to scale their operations without worrying about logistics.

Customer Service

Providing excellent customer service is crucial for any e-commerce business. Amazon Seller Central offers tools to help you manage customer inquiries, feedback, and returns. You can easily communicate with buyers through the platform's messaging system, resolve any issues promptly, and maintain a positive seller rating. By prioritizing customer satisfaction, you can build a loyal customer base and drive repeat sales.

Sales Performance Analytics

Understanding your sales performance is essential for making informed business decisions. Amazon Seller Central provides detailed analytics and reports that give you insights into your sales, revenue, and customer behavior. You can track key metrics such as conversion rates, average order value, and customer reviews. This data allows you to identify trends, optimize your product offerings, and tailor your marketing strategies to maximize your sales potential.

In conclusion, Amazon Seller Central is a powerful platform that offers numerous benefits to sellers. From managing inventory and fulfilling orders to providing excellent customer service and analyzing sales performance, it provides a comprehensive solution for selling on the Amazon marketplace. By leveraging the tools and features offered by Amazon Seller Central, you can streamline your operations, increase your sales, and grow your e-commerce business.

Navigating the Amazon Seller Central Dashboard

Once you have successfully set up your Amazon Seller Central account, you will be greeted with a comprehensive dashboard that serves as the control center for your business. Let's explore the key features and functionalities of the dashboard.

Overview of the Dashboard Features

The dashboard provides an overview of your account's performance, including important metrics such as sales, traffic, and customer reviews. It also gives insights into your inventory levels, order fulfillment status, and advertising campaigns. This comprehensive overview allows you to stay on top of your business and make informed decisions to drive your success.

When you first log in to your Seller Central account, you will be presented with a visually appealing and user-friendly interface. The dashboard is designed to provide you with all the essential information you need to manage your Amazon business effectively. From the moment you access the dashboard, you will be able to see a snapshot of your business's performance.

One of the main features of the dashboard is the sales performance section. Here, you can view your sales data in real-time, including the total revenue generated, the number of units sold, and the average order value. This information is crucial for understanding how your products are performing on the platform and allows you to make data-driven decisions to optimize your sales strategy.

Another important feature of the dashboard is the traffic analysis section. This section provides insights into the number of visitors to your product listings, the source of traffic (such as organic search or paid advertising), and the conversion rates. By analyzing this data, you can identify which marketing channels are driving the most traffic and conversions, enabling you to allocate your resources effectively.

In addition to sales and traffic metrics, the dashboard also offers valuable information about customer reviews. You can monitor the average star rating of your products, read customer feedback, and respond to reviews directly from the dashboard. This feature allows you to engage with your customers and address any concerns or issues promptly.

Understanding Sales Metrics and Reports

Amazon Seller Central provides detailed sales metrics and reports that help you analyze your product performance and identify trends. By examining metrics such as units sold, revenue generated, and conversion rates, you can gain valuable insights into your customers' preferences and adjust your strategy accordingly.

The sales metrics section of the dashboard provides a comprehensive overview of your product performance. You can view data for specific time periods, such as daily, weekly, or monthly, and compare it to previous periods to identify any changes or trends. This data is presented in easy-to-understand graphs and charts, allowing you to quickly grasp the key takeaways.

In addition to the sales metrics section, Seller Central also offers various reports that provide more in-depth insights into your business. For example, you can generate a sales by ASIN (Amazon Standard Identification Number) report to see how each of your products is performing individually. This report includes data such as units sold, revenue generated, and the number of customer reviews for each ASIN.

Another useful report is the customer reviews report, which allows you to analyze the feedback and ratings your products have received. This report provides information about the average star rating, the number of reviews, and the sentiment analysis of the reviews (positive, negative, or neutral). By understanding your customers' opinions, you can make improvements to your products and enhance the overall customer experience.

Managing Orders and Inventory

The platform allows you to efficiently manage orders and inventory, ensuring a seamless customer experience. You can track order status, process refunds and returns, and even set up automated fulfillment through Amazon's FBA (Fulfillment by Amazon) service. Additionally, you can monitor and update your inventory levels to avoid stockouts and maximize sales.

The order management section of the dashboard provides a centralized view of all your orders. You can easily track the status of each order, from the moment it is placed to the moment it is delivered to the customer. This feature allows you to stay organized and ensure timely order fulfillment.

In addition to order management, Seller Central also offers a comprehensive returns and refunds section. Here, you can process customer returns, issue refunds, and handle any customer inquiries related to returns. This feature is crucial for maintaining customer satisfaction and building trust in your brand.

If you choose to use Amazon's FBA service, the dashboard provides seamless integration with the fulfillment process. You can set up automated fulfillment, where Amazon takes care of storing, packaging, and shipping your products to customers. This service not only saves you time and effort but also ensures fast and reliable delivery, enhancing the customer experience.

Furthermore, the inventory management section of the dashboard allows you to monitor and update your product inventory levels. You can easily track the quantity of each product, set up low stock alerts, and replenish your inventory when needed. By maintaining optimal inventory levels, you can avoid stockouts and maximize sales opportunities.

In conclusion, the Amazon Seller Central dashboard is a powerful tool that provides you with a comprehensive overview of your business's performance. From sales metrics and reports to order and inventory management, the dashboard offers a wide range of features and functionalities to help you succeed as an Amazon seller. By utilizing the insights and tools available in the dashboard, you can make data-driven decisions, optimize your sales strategy, and provide an exceptional customer experience.

Listing Products on Amazon Seller Central

Listing your products on Amazon Seller Central is an essential step in reaching potential customers and generating sales. Let's explore the best practices for product listing and the tools available to streamline the process.

Product Listing Best Practices

When creating product listings, it is crucial to optimize them for maximum visibility and conversion. This includes writing compelling product descriptions, using high-quality images, and selecting relevant keywords. By following these best practices, you can enhance your product's discoverability and attract more potential buyers.

Using the Bulk Listing Tool

If you have a large inventory, manually listing each product can be time-consuming. Luckily, Amazon Seller Central offers a bulk listing tool that allows you to upload multiple product listings at once. This not only saves time but also ensures consistency across your listings, resulting in a professional and cohesive brand presence.

Managing Product Variations

If you sell products with variations, such as different sizes or colors, Amazon Seller Central provides tools to simplify the management of these variations. You can create parent-child relationships between your products, making it easier for customers to find the specific variation they are looking for.

Optimizing Your Amazon Seller Central Presence

Once your products are listed on Amazon Seller Central, it is essential to optimize your presence to stand out from your competitors and attract potential buyers. Here are some tips to enhance your visibility and increase your chances of making a sale.

Tips for Improving Product Visibility

Optimizing your product listings for search engines within the Amazon marketplace is essential for improving your visibility. This involves using relevant keywords in your product titles, bullet points, and product descriptions. Additionally, leveraging Amazon's advertising services, such as Sponsored Products, can help boost your product's visibility to a wider audience.

Utilizing Amazon SEO Strategies

Just like traditional search engine optimization (SEO), Amazon SEO strategies involve optimizing your product listings to rank higher in Amazon's search results. By understanding the factors that influence Amazon's search algorithm and incorporating them into your product listings, you can increase your chances of appearing in relevant search queries.

Managing Customer Reviews and Feedback

Customer reviews and feedback play a crucial role in influencing purchase decisions. Positive reviews can build trust and credibility, while negative reviews can deter potential buyers. Amazon Seller Central provides tools to manage and respond to customer reviews effectively. By addressing customer concerns and providing exceptional customer service, you can enhance your reputation and drive repeat business.

Amazon Seller Central offers numerous benefits and tools that empower sellers to grow their e-commerce businesses on the Amazon marketplace. By understanding the platform's features, optimizing product listings, and utilizing Amazon SEO strategies, sellers can increase their visibility, attract more customers, and ultimately drive their success. So whether you are a beginner or an experienced seller, harness the power of Amazon Seller Central to take your business to new heights.